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A solitary wave solution of the Maxwell-Dirac equations 
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Depanment of Physics, University of California San Diego, La Jolla, CA 92093-0319, USA 

Received 13 February 1995 

Abstract. We investigate a class of localized stationary numerical solutions to the Maxwell- 
Dirac system ofclassical nonlinear field equations in 3+ 1 dimensions. The solutions are discrete 
energy eigenstates bound predominantly by the self-produced elecvic field, 

1. Introduction 

There are many examples of classical solitary wave solutions to nonlinear field theory 
equations. Some of these are useful in quantum field theory as a first-order solution to a 
semiclassical expansion of the quantized field equations [l]. Although these solutions are 
often relegated to model equations in fewer than three space dimensions [Z], we consider the 
Maxwell-Dirac system of equations in (3+ 1)-dimensional spacetime, a nonlinear system of 
PDES involving twelve real functions of four variables. The general solution of this system 
is certainly well beyond our grasp, however, we will obtain a clus of particular solutions 
by making simplifying assumptions and utilizing numerical methods. 

Before we embark on a search for a localized solution it would be wise to consider on 
what grounds such a solution is plausible. It is well known that when one considers the 
Dirac equation with an external ‘repulsive’ potential the possibility arises to obtain bound- 
state solutions [3]. This potential produces bound states with discrete energies that rise from 
the continuum of free negative energy states in the same way that an ‘attractive’ potential 
produces lower energy states from those of positive energy. For a great enough ‘repulsive’ 
potential we may even obtain bound states of positive energy. This interesting phenomenon 
goes under the name of ‘Klein’s paradox’ and provides our motivation. In our case the 
‘repulsive’ potential is provided by the charge feeling its own electric field. 

2. Field equations 

The Maxwell-Dirac equations are obtained from the well known Lagrangian density 

L = iGy@apq - GY - q @ y W A ,  - ~ F P ~ F ~ ,  (2.1) 
in which the c-number fields are the Dirac spinor q, which can be considered a four- 
component single-column matrix, and we have A’ = (@,A) ,  * = YtyO, FKy = 
apA”  - ?PAp, a,, = a/axe, x p  = ( r ,  z), and y” are the 4 x 4 matrices 

I O  o u  
Y o = ( o  o)  
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in which I is the 2 x 2 identity matrix and U represents the Pauli matrices 

0 -i 1 0  

The Euler-Lagrange equations applied to (2.1) give the Maxwell-Dirac equations 

y@(ia, - qAJY - Y = 0 (2.2) 

a V v  = qGy@w. (2.3) 

Throughout we use natural units, in which we have rescaled length, mass and time so that 
h = m  = c =  1. 

We now begin making assumptions about the solution we wish to look for. We require 
that A' satisfy the Lorentz condition a,Aw = 0 and that Y is an energy eigenstate, 
\I, = 

V2AP = - j P  (2.4) 

Equation (2.3) now reduces to Poisson's equation 

where j @  is the 4-cument 

j @  = q W +  (2.5) 

and equation (2.2) can tie written as a Hamiltonian eigenvalue equation 

E$ = H+ = [yay. (-iV - qA) + yo + q@]@. (2.6) 

We would now like to assume spherical symmetry for our wavefunction, however, 
we find that the resulting vector potential A has an angular dependence that destroys the 
symmetry. This gives us two options: we may throw out the magnetic term in the hope that 
its contribution will be small and solve the resulting one-dimensional spherically symmetric 
problem, or we may attack the non-spherical problem. We proceed with the former and 
save the latter for section 5. By removing A we reduce the Maxwell-Dirac system (2.1) to 
a massless scalar Dirac system 

L = iGy@awq - @w - q G y o ~ @  + &@)(a@@). (2.7) 

Note that, with y o  in the coupling term, our massless scalar Dirac system (2.7) is 
not Lorentz invariant and is therefore only of use in approximating the Maxwell-Dirac 
system. 

The necessity for a spherical charge distribution restricts our wavefunction to four 
possible configurations corresponding to total angular momentum up or down, m, = A$, 
and the quantum number K = AI, 

g ( r )  

K=-1 m, = 1 f o r + = (  -if@) 0 cos 0 ) 
-if(r)e'+ sine 
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/ 0 \ 

g(r)e'" sine 
~ = l  m,=-? 1 for $ = ( -g:r;cose) 

-if 0) 
in spherical coordinates (r, 8 ,  @), where we have chosen to orient the angular momentum 
along the z-axis. Note tliat the two K = -1 configurations have the same angular dependence 
as the hydrogen ground state. Equations (2.4>-(2.6), neglecting A, now reduce to the radial 
eauations 

(2.9) 
q @ - 1  ) \ I /  I & T A  -+- 

r r 

(2.10) 

We symmetrize the Hamiltonian in (2.9) by the similarity transformation F s rf, G 3 rg, 
and further simplify (2.9) and (2.10) by identifying the fine structure constant (Y q2/4n 
and defining the potential V 

2 
@" + ;@' = - q ( f 2  + g2). 

q@, giving us 

K - + -  v - 1  
dr r 

(2.11) 

( F2 + G2). (2.12) I ,  4nff (rV) =-- r 
We also restrict our wavefunction by imposing the normalization condition 

1 = d3x YfY = 4n l w d r ( F 2  + G2) (2.13) 

ensuring a total charge of q. Note that inE does not appear in (2.11>-(2,13); hence, the 
energy levels are independent of the choice m, = &+. 

3. Solution 

We may readily solve our system of ODES (2.11) and (2.12) by a variety of means, including 
power series solution [41, Pad6 series approximation [5] and numerical methods. We choose 
the latter as it seems the most straightforward path to obtaining a solution. 

We discretize equations (2.11) and (2.12) using second-order finite differences to obtain 
a standard linear symmetric matrix eigenvalue problem for (G(r), F(r)) and E coupled 
nonlinearly to a symmetric matrix inverse problem for rV. We obtain solutions by solving 
each linear problem independently and iterating to convergence from an initial guess. This 
technique is similar to Newton's method of solving the nonlinear system but allows for better 
behaviour in solving the eigenvalue problem at the cost of slower convergence. We use 
inverse iteration for the eigenvalue problem together with the conjugate gradient method 
[6] for the matrix inverses. Although more efficient methods are available for the one- 
dimensional problem 171, we have chosen methods which will work equally well for the 
case of two independent variables discussed in section 5. 

J 
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Figure 1. A normalized localized solution to our scalar Dirac system for the choice of (I = 2.7. 
K = 1 and n = 0. showing f ( r ) ,  g ( r )  and V ( r )  scaled down by a factor of six to be fully 
visible. Note the asymptotic behaviour of V ( r )  % (I/r for large r .  The expectation value ( r )  
is also shown. All values are in natural units. The one-dimensional mesh was discretized into 
200 poinn for this calculation. 

Table 1. Numerical results for our scalar Dirac approximation on a 200 point mesh for several 
choices of (I, n and K.  All values shown are i n  natural units. 

ol ~ K E  AEnd (r) / k / ( 9 m z )  

11137 0 1 
0.1 0 1 
1.0 0 I 
2.0 0 I 
2.4 0 1 
2.7a 0 1 
3.0 0 1 
U137 1 -1 
2.0 1 -1 
3.4 1 -1 
3.8 1 -1 
3.0 1 1 
5.0 1 1 
5.5 1 1 
2.0 2 - I  
5.8 2 -1 
6.0 2 -1 
6.0 2 1 
6.0 3 1 

-1 t 9 x 106 -0.00 
-1 + 2 1 0 - ~  -0.00 
-0.83 ~~ -0.00 
-0.28 -0.05 
0.09 -0.10 
0.46 -0.16 
0.93 -0.24 

-0.00 
-0.75 -0.00 
0.06 -0.06 
0.89 -0.14 

-0.68 -0.00 
0.32 -0.05 
0.90 -0.10 

-0.93 -0.00 
0.02 -0.03 
0.18 -0.03 

-0.37 . -0.01 
-0.71 -0.00 

-1 + 3 x 10-6 

572.0 -1.2 
42.0 -1.2 
4.1 -1.1 
1.9 -1.0 
1.5 -0.9 
1.2 -0.8 
1.0 -0.7 

1710.0 -0.4 
5.4 -0.3 
2.0 -0.2 
1.2 -0.1 
6.2 -1.1 
2.4 -0.9 
1.8 -0.8 
18.0 -0.4 
3.5 -0.2 
3.1 -0.2 
6.2 -1.0 
13.0 -1.1 

LSolution shown in figure 1. 

Figure 1 shows a solution to our system (2.11H2.13) for the choice of a = 2.7. We 
may use the numerical solution to calculate expectation values, such as ( r )  and the strength 
of  the neglected magnetic interaction. Table 1 shows the results for various selections of 
the parameter a ,  which completely determines the set of solutions. The energy E as a 
function of a,  K, and the number of nodes in g, represented by n ,  is shown in figure 2. We 
can see from figure 2 and directly from (2.1 1) that localized solutions are only possible for 
-1 e E < 1. Note that positive energy solutions exist for cf > 2.4 and that there is a 
spectrum of large n states of energies near negative one for any choice of a. 
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FigureZ. Energylevelsasafunctionofcr forourscalarDiracapproximation. Thebrokencwes 
represent deviations due to the magnetic interaction calculated via the firscorder pemrbation. 
All values shown are in natural units. 

4. Magnetic interaction perturbation 

For the solution to our scalar Dirac equations to be a viable approximate solution to the 
Maxwell-Dirac equations, we must establish that the inclusion of the magnetic interaction 
does not significantly alter the solution. We do this properly in section 5 by modelling 
the larger system (2.4)-(2.6), including the angular dependence. However, we will use 
perturbation theory with our spherically symmetric solution to determine the approximate 
energy shift AEw due to the magnetic interaction and find good agreement with the full 
Maxwell-Dmc case. 

The magnetic interaction terni in the Hamiltonian density is 

Hw = - j  . A .  (4: 1) 

We use our solution form (2.8) in equation (2.5) to get the current 

j = 4 q ~ m , f ( r ) g ( r )  sin@. (4.2) 

From this we obtain the vector potential A = A ( r )  sin@$, in which A is calculated via the 
Green function integral 

where r< (r>)  represents the lesser (greater) of r and T I .  We may now calculate the 
approximate magnetic energy shift to first order via 

The values obtained for AEw are seen in figure 2 and table 1 and found to be small 
compared to the binding energy. 
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We may also use our current (4.2) to calculate the magnetic moment via 

p = L 2 d3x(z x j )  
m 

= 2qrm,nZ Jd  dr rF(r)G(r) i  . (4.5) 

Note in table 1 that we obtain the result 

5. Full Maxwell-Dirac solution 

From our calculations in the previous section we expect that the inclusion of the magnetic 
interaction will result in the emergence of a small non-trivial angular dependence on the 
0 coordinate. We also expect the solution to maintain its axial symmetry and proceed in 
cylindrical coordinates @, z ,  @), assuming a wavefunction of the fonn 

2 f when we choose K = 1. 

and potentials of the form 0 = $ V ( p , z ) ,  A = fA(p, z)& Equations (2.4) and (2.5) now 
reduce to 

(5.2) 
1 (a," + + a:)cfiv) = - 4 Z % m ?  + +zz + e32 + +42) 

(5.3) 

and the Hamiltonian (2.6) becomes 

. (5.4) 

- a , - + + ~  (nl,+') v + 1  0 -az 
0, v +  1 -8, + + - A a, 

a , + P + L - A  v - 1  0 

[a, - 4 + A -a, 0 v - 1  

a, 0 ) (5) ' 
E ( ; ) = (  a, -?+A O -az 0 v - 1  y 4  

h - 1 )  

We symmetrize (5.4) by the substitution Ye = ,@$e, giving us 
v + l  0 -a, -a , -y+~ 

a, a ,+$ -A  v - 1  
V + 1  - 8 , + $ - A  

(5.5) 
Note that our wavefunctions in both cases (2.8) and (5.1) are eigenfunctions of the z 
component of the angular momentum J, with eigenvalue m, = hi, where 

J, = L, + !jX, 
-i(z x V) and in which L 

The full system (5.2)-(5.5) is once again spin-degenerate since the change to m, = -mi 
produces the same system with the change (A = -A', YI = -Y;, Y2 = Yi, Y3 = Y& 
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Flgure 3. A normalized localized solution Io the Maxwell-Dirac system for the choice of 
U = 2.1,. showing the four components of the wavefunction $i(p.  z). the potential V ( p ,  I )  

and the 0 component of the vector potential A(p.  2). The contours go from min (light) to 
mar: (dark) and a11 values an in natural units. The two-dimensional mesh was discretized into 
60 x (2 x 60 + 1) points for this calculation. The energy WBS calculated as €2 = 0.22, IO be 
compared with that obtained from the one-dimensional approximation, E + OEM = 0.30. 

W4 = -W;). Although our scalar Dirac wavefunctions (2.9) are eigenfunctions of 
K I y o ( X  . L + 1) with eigenvalue K ,  our solutions of the non-spherically symmetric 
case will vary slightly from these eigenfunctions. 

Figure 3 shows a numerical solution to the full system for the same parameter choice 
as in figure I .  Note that the angular dependence is virtually indistinguishable from 
the approximate solution and that the energy agrees reasonably well with the first-order 
perturbation approximation. 
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6. Conclusion 

We have found a class of solitary wave solutions to the full Maxwell-Dirac equations and 
good approximate solutions via a scalar D i m  quation. We are, of course, free to translate, 
rotate and boost our full solution via the suitable Poincari group operator. In practice, 
the non-Lorentz-invariant approximate solution is easier to work with and provides better 
accuracy for most calculations. 

The issue of stability has not been directly addressed. The success of our iterative 
solution method suggests that each solution is stable with regard to slow collapse or 
expansion. However, we suspect that each solution will be unstable via radiative transitions 
to states of large negative energy, as is any bound-state solution to the Dirac equation. 

Although our solution may be considered of independent interest as the only known exact 
non-trivial solution to a locally gauge-invariant classical field theory in 3 + 1 dimensions, 
a physical interpretation is not readily apparent. There is always the hope that this sort 
of soliton-like solution may represent a fundamental particle, however, this conjecture 
is currently unsubstantiated. As it exists now, we see that our class of solutions to the 
Maxwell-Dirac system may not be immediately interpreted as representing the leptons. 
This is clear from the large value of ( r )  and negative value for E for (Y = & as well as 
from the experimental fact that weak interactions play the starring role in lepton transitions. 

Several authors have used similar solutions to construct hadrons from interacting quarks 
[8, 91, however, these solutions were for systems of nonlinear scalar fields interacting 
with the D i m  field and the solutions were essentially a result of the nonlinear scalar 
self-interaction rather than the coupling term. If our solution is to be considered in the 
construction of hadrons, it will have to be interpreted as a Hartree approximation in the 
spirit of Witten [IO, 111. Towards this end we note that the substitution of the charge 
conjugate wavefunction Wc = iyzW* produces the identical system of equations with the 
sign of the potential and energy spectrum reversed, giving a more sensible bound-state 
interpretation. 
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